Optimization of a Four-Lobed Swirl Pipe for Clean-In-Place Procedures

نویسندگان

  • Guozhen Li
  • Philip Hall
  • Nick Miles
  • Tao Wu
چکیده

This paper presents a numerical investigation of two horizontally mounted four-lobed swirl pipes in terms of swirl induction effectiveness into flows passing through them. The swirl flows induced by the two swirl pipes have the potential to improve the efficiency of Clean-In-Place procedures in a closed processing system by local intensification of hydrodynamic impact on the internal pipe surface. Pressure losses, swirl development within the two swirl pipe, swirl induction effectiveness, swirl decay and wall shear stress variation downstream of two swirl pipes are analyzed and compared. It was found that a shorter length of swirl inducing pipe used in joint with transition pipes is more effective in swirl induction than when a longer one is used, in that it has a less constraint to the induced swirl and results in slightly higher swirl intensity just downstream of it with the expense of a smaller pressure loss. The wall shear stress downstream of the shorter swirl pipe is also slightly larger than that downstream of the longer swirl pipe due to the slightly higher swirl intensity induced by the shorter swirl pipe. The advantage of the shorter swirl pipe in terms of swirl induction is more significant in flows with a larger Reynolds Number. Keywords—Swirl pipe, swirl effectiveness, CFD, wall shear stress, swirl intensity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Investigation of the Role of the Inlet Swirl Velocity Profile on Decay of Swirl in Pipe Flow

The influence of the inlet swirl velocity profile shape on the decay of swirl in steady-state, incompressible, laminar pipe flows is investigated by means of computational fluid dynamics. The investigation is carried out for a Reynolds number of 2000, which marks the upper limit of the laminar flow behavior for unidirectional pipe flow. Computations are performed for two different mean swirl nu...

متن کامل

Swirl boundary layer and flow separation at the inlet of a rotating pipe

When a fluid enters a rotating circular pipe, an angular momentum or swirl boundary layer appears at the wall and interacts with the axial momentum boundary layer. In the centre of the pipe, the fluid is free of swirl and is accelerated due to boundary layer growth. Below a critical flow number, defined as the ratio of average axial velocity to circumferential velocity of the pipe, there is flo...

متن کامل

A Taguchi approach on optimal process control parameters for HDPE pipe extrusion process

High-density polyethylene (HDPE) pipes find versatile applicability for transportation of water, sewage and slurry from one place to another. Hence, these pipes undergo tremendous pressure by the fluid carried. The present work entails the optimization of the withstanding pressure of the HDPE pipes using Taguchi technique. The traditional heuristic methodology stresses on a trial and error appr...

متن کامل

Optimization of Double Pipe Fin-pin Heat Exchanger Using Entropy Generation Minimization

In the current work optimization of double pipe fin-pin heat exchanger has been studied. The effective parameters those are controlling the heat exchanger performance are divided in two categories; geometrical and operating conditions. Using the Brent’s optimization algorithm and handling the thermodynamically design concept, one can minimize entropy generation in different length of heat excha...

متن کامل

Ductile Failure and Safety Optimization of Gas Pipeline

Safety and failure in gas pipelines are very important in gas and petroleum industry. For this reason, it is important to study the effect of different parameters in order to reach the maximum safety in design and application. In this paper, a three dimensional finite element analysis is carried out to study the effect of crack length, crack depth, crack position, internal pressure and pipe thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015